Checking the Constraints in Your Biotics Database
01/11/2006
Introduction:

The Biotics database contains many constraints that allow Oracle to enforce business rules and maintain data integrity. There are several different types of constraints, but the most important ones are those for uniqueness and for referential integrity.
A unique constraint is placed on one or more columns of a table in order to prevent duplicate values in those columns. An example of this would be a constraint on a primary key column. Another example would be an alternate key, which is a constraint on a non-key column or columns, such as the elcode_bcd column in the ELEMENT_GLOBAL table.

A referential integrity constraint is also known as a foreign key constraint. This is a constraint that is placed on a column in a table that is used as a foreign key column in another table. A foreign key constraint will prevent deletions of values that are referenced as foreign keys in other tables, thus preventing tables from referencing values that no longer exist.
It is extremely important that your Biotics database have the complete set of unique and foreign key constraints, especially during the data exchange process. If your database is missing any constraints, you may have invalid data that will need to be reconciled before it can be added to the NatureServe Central database. The Exchanger application relies on the presence of constraints when importing data into your database. If you are missing any constraints when you upload data, you may add invalid data to your database that will be time consuming and painful to remove. Both of these situations will result in undue delays, frustration, and aggravation.
To prevent this from happening, the Biotics Support team has put together a simple procedure that will allow you to compare the constraints in your database against the constraints in the NatureServe Central database and identify any missing constraints. In a nutshell, the procedure is as follows:
1. Create a temporary table that lists the constraints that you should have in your database.

2. Run a query that will compare your constraints against the temporary table, displaying any missing constraints.

3. Add any missing constraints to your database with SQL statements.

When should you perform this procedure? You should perform this before exporting your data to send it to NatureServe Central. You should perform this before importing the data you receive from NatureServe Central into your database. You can also perform it anytime. Your users do not need to be logged out of Biotics while you do this. The list of constraints will be updated periodically, so please make sure you have the latest script and report before you proceed. This package will be maintained on the Biotics Support website.

Please read over the instructions before you begin. If you have any questions about this procedure, or its results in your database, please open an item in the product support database at the Biotics Support website.
1. Create the temporary table:
Please note that the script should be run in SQL+, not the SQL+ Worksheet.

To create the temporary table, logon as the biotics_user in SQL+ and enter the following command:
@<path name for file>\check_constraints.sql
Substitute the directory folder where you put the contents of Biotics_constraints.zip for <path name for file> (example: @C:\temp\check_constraints.sql).
You will be prompted to supply the path where the script will automatically save the output to a log file called check_constraint.log so that you may review any errors —'Enter path for update log w/o last back slash:'.

Once the script has finished execution, open the log file and make sure everything was performed without errors.

This script will create a temporary table called CONSTRAINT_TEMP and populate in with the names of the constraints that you should have in your database. If you already have a table in your database with this same name, you will need to alter this script and rename the temporary table to something different. Be sure and change the insert statements to reference the new table name.
2. Check for missing constraints:
Once the table has been created, you can query it to see if you have any missing constraints in your database. In SQL+, Query Builder, or your favorite third party database tool, enter:

SELECT
ct.constraint_name

FROM
 constraint_temp ct

WHERE ct.constraint_name not in (select constraint_name from user_constraints);
This query will show you which constraints are not in your database that are in the NatureServe Central database. If you get a lot of rows returned, you should spool or export the results to a text file. If you get no rows returned, you can celebrate and skip over to the Clean Up section.

You can also get a tally of constraints with this query:

SELECT
count(*)

FROM
 constraint_temp ct

WHERE ct.constraint_name not in (select constraint_name from user_constraints);

3. Check constraint names against the dictionary:

It is entirely possible that you may have the same constraints in your database but under a different name. It is not necessary that the constraints in your database have the exact names as the constraints in the Central database, but it is important that the correct columns are constrained. You can use the dictionary in the accompanying Biotics_constraints.xls spreadsheet to see if the columns constrained by your constraint are the same as the columns constraint by the Central database constraint.

For example, your query finds that constraints SYS_C009415 and SYS_C009589 are missing from your database. Your first step is to look these constraints up in the Biotics_constraints.xls document. (Note that there are two worksheets in this spreadsheet, so be sure to look in both of them; constraint names are in column B.) You’ll see that they are both foreign key constraints. SYS_C009415 is a constraint on the ALLIANCE table, the higher_class_unit_id column referencing the HIGHER_COMMUNITY table. SYS_C009589 is a constraint on the COMMUNITY_GLOBAL table, the element_global_id column referencing the ELEMENT_GLOBAL table. You should query your database to see if you have the same tables and columns constrained but with a different name and you can do so with this query:
SELECT
uc.*
FROM

USER_CONSTRAINTS uc, USER_CONS_COLUMNS ucc

WHERE
 ucc.column_name = 'HIGHER_CLASS_UNIT_ID' AND
ucc.TABLE_NAME = 'ALLIANCE' AND
ucc.CONSTRAINT_NAME = UC.CONSTRAINT_NAME AND
UC.CONSTRAINT_TYPE = 'R';
You should get one row back if you have this constraint in your database. The value in the R_CONSTRAINT_NAME column should be the same name in the Parent Table column of the Biotics_constraint.xls document (without the ‘_PK’ suffix). You might notice that there is a different value in the CONSTRAINT_NAME column. This is okay and can be ignored. Just to finish the example, here’s a query to find the second missing constraint:
SELECT
uc.*
FROM

USER_CONSTRAINTS uc, USER_CONS_COLUMNS ucc

WHERE
 ucc.column_name = ELEMENT_GLOBAL_ID' AND
ucc.TABLE_NAME = 'COMMUNITY_GLOBAL' AND
ucc.CONSTRAINT_NAME = UC.CONSTRAINT_NAME AND
UC.CONSTRAINT_TYPE = 'R';
In general, the query is as follows:

SELECT
uc.*
FROM

USER_CONSTRAINTS uc, USER_CONS_COLUMNS ucc

WHERE
 ucc.column_name = ‘CONSTRAINT COLUMN NAME ALL IN CAPS’ AND
ucc.TABLE_NAME = 'TABLE NAME ALL IN CAPS' AND
ucc.CONSTRAINT_NAME = UC.CONSTRAINT_NAME AND
UC.CONSTRAINT_TYPE = 'R';
4. Add any missing constraints:
Any constraints found to be missing must be restored to your database. You should make note of the constraint names returned in the query and look them up in the Biotics_constraints.xls document that accompanies this package. This report will tell you the table and columns as well as the type of constraint that you will need to add. You will need to logon to your database in SQL+ as the biotics_user.
Adding a foreign key constraint:

For example, if your query returned ‘ESR_LIN_DIST_OCCUPANCY’ then according to the report, you will need to add a foreign key constraint to the ELEMENT_SUBNATL_RANK table. The format for the SQL statement to add a foreign key constraint is:

ALTER TABLE <table name>

ADD CONSTRAINT <constraint name> FOREIGN KEY(<column name>)

REFERENCES <parent table name>(<parent column name>);

Using our example, you’d enter:

ALTER TABLE element_subnatl_rank

ADD CONSTRAINT esr_lin_dist_occupancy FOREIGN KEY(d_lin_dist_of_occupancy_id)

REFERENCES d_list_dist_of_occupancy(d_lin_dist_of_occupancy_id);

You do not need to do a commit after you enter an ALTER TABLE statement.

Adding a unique constraint:
If your query showed that you were missing a unique constraint, you’d add it back to the database with a similar statement. For example, if you found that constraint ALLIANCE_AK1 was missing, you’d look in the Biotics_constraints.xls document and find that it is a unique constraint on the ALLIANCE table on column alliance_key_bcd. The format for adding a unique constraint is:
ALTER TABLE <table name>

ADD CONSTRAINT <constraint name> UNIQUE (<column name>, <another column name>, etc);

For this example, you’d enter:

ALTER TABLE alliance

ADD CONSTRAINT alliance_ak1 UNIQUE (alliance_key_bcd);

Please note that many unique keys are on more than one column. To add a unique constraint on more than one column of a table, follow this example:

ALTER TABLE animal_cag_food_habits

ADD CONSTRAINT animal_cag_food_habits_ak1 UNIQUE (d_food_habits_id, element_global_id);

4. Clean up:
Once you have successfully added the missing constraints to your database (or if you had no missing constraints to add), you should drop the temporary table that was created in your database. In SQL+, logged on as the biotics_user, enter:

DROP TABLE constraint_temp;

The next time you want to run this procedure, you should download a fresh copy of the package from the Biotics Support website, rather than keeping and reusing an old temporary table.
5. Unable to add a unique constraint:
You may encounter problems in adding a constraint in your database if you have any data in your database that would violate the constraint. For example, if you have duplicate values of alliance_key_bcd in the ALLIANCE table, then you will get an error message from Oracle saying “Duplicate values found” when you try to add unique constraint ALLIANCE_AK1. You will need to locate the duplicate values and delete one of them before you can put on the constraint. You can query for duplicate values with this query:

SELECT alliance_id, alliance_key_bcd FROM

 alliance A

WHERE rowid >

 (SELECT min(rowid) FROM alliance B

 WHERE

 B.alliance_key_bcd = A.alliance_key_bcd

);
Once you have determined which values have duplicates, you can see their records with this query:
SELECT *

FROM alliance

WHERE alliance_key_bcd = ‘<duplicated value here>’;

Or if you have more than one with dupes:

SELECT *

FROM alliance

WHERE alliance_key_bcd in (‘value1’, ‘value2’, ‘value3’, etc.);
You should then be able to determine which record(s) to delete or modify.

6. Unable to add a foreign key constraint:
If you are trying to add a foreign key constraint on a column that has a value in it that is not found in the parent table, you will get an error message from Oracle saying “Referential Integrity – parent keys not found.” For example, you are trying to add the ESR_LIN_DIST_OCCUPANCY constraint in on the ELEMENT_SUBNATL_RANK table and one of the rows has a value of “100” in this column. Unfortunately, value “100” is not found in the D_LIN_DIST_OF_OCCUPANCY table, which is the parent table for this column. Oracle will not let you put on the constraint until you either delete or modify the row in the ELEMENT_SUBNATL_RANK that has “100” in it, or add a row to the D_LIN_DIST_OF_OCCUPANCY table that has “100” for a value. To find any missing values in a table, you can do this query:

SELECT esr.*

FROM element_subnatl_rank esr

WHERE esr.d_lin_dist_of_occupancy_id NOT IN (SELECT d_lin_dist_of_occupancy_id

 FROM d_lin_dist_of_occupany);

7. Get ‘constraint already exists’ message:

You are trying to add a constraint that is already constrained. Perform the checks in Step 3 to see if perhaps you have the constraint under another name. If you do, you do not have to add it again.

8. Get ‘table or view does not exist’ message:
Check how you are logged in. You can do so in SQL+ by entering: SHOW USER. You must be logged on as the biotics_user in order to create constraints on biotics_user tables.

If you have any questions or problems with any of the procedures outlined in this document, please consult the KnowledgeBase first. If you do not find the answer to your question, open a product support item at the Biotics Support website

2

