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A B S T R A C T

Conservation decisions are well supported by predictive spatial models that indicate the relative ecological
condition of a given place. The intent of this 90 m pixel landscape condition model is to use nationally available
spatial data from the USA, Mexico, and Canada to express assumptions regarding the relative ecological effects of
land uses on terrestrial natural communities and species. This approach emphasizes and updateable and
transparent design which takes advantage of empirical biodiversity data from the USA to both calibrate and
validate the model. Map layers depicting infrastructure, land use, and modified vegetation were each scored for
site impact and distance decay, and then combined into one map surface. Field observations from Natural
Heritage Programs, each scored for relative ecological condition (in categories A = excellent to D = poor), were
used to calibrate distance decay parameters. Some 90,000 observations for at-risk species, invasive plant species,
and natural communities were used for model validation. Statistically significant distinctions in ecological
condition among validation samples were predicted by the resultant spatial model. Variation in landscape
condition was then summarized by regional U.S. Landscape Conservation Cooperatives (LCCs) in terms of areas
approximating A–D condition. Montane and desert LCCs scored on average much higher in area approximating
“A” and “B” landscape condition, while LCCs with more substantial agricultural and urban footprints scored
overwhelmingly within the “D” range of condition. Similar analyses illustrated range-wide scoring of landscape
condition for major vegetation types across temperate North America.

1. Introduction

Ecological condition commonly refers to the state of the physical,
chemical, and biological characteristics of natural ecosystems, and their
interacting processes (Stoddard et al., 2006). Ecological condition is
often equated with ecological integrity, which has been defined as the
ability of an ecological system to support and maintain a community of
organisms with the composition, diversity, and functional organization
comparable to those of natural habitats within the region (Parrish et al.,
2003). Many human land uses affect ecological condition, through ve-
getation removal or alteration, hydrologic alteration, and introduction
of invasive species, resulting in stress to ecosystems. These human-in-
duced stressors in turn fragment landscapes by disrupting species dis-
persal and other ecological processes that require contiguous natural
conditions (Lindenmayer and Fischer, 2013). Therefore, if one seeks to
understand ecological condition, one should consider condition both at
local sites of interest and at broader spatial and temporal scales.

Since human land uses, such as built infrastructure for

transportation, urban development, industry, agriculture and other
vegetation alterations, are depicted in maps that are periodically up-
dated (Turner et al., 2015), they can be used in spatial models to make
inferences about the status and trends in human-induced stress and
ecological condition of landscapes at regional to global scales
(Sanderson et al., 2002; Theobald, 2013; Venter et al., 2016). Maps of
this nature can be particularly helpful for identifying relatively un-
altered landscape patches. These patches can be subsequently analyzed
using a variety of fragmentation statistics aiming to quantify patch area,
shape, isolation, and edge to area ratio (Nagendra et al., 2004). They
can be used for screening ecological reference sites; i.e., a set of sites
occurring in landscapes that vary from low to high landscape frag-
mentation (Comer and Faber-Langendoen, 2013). If they express a
continuum of ecological condition, they could be overlain on ecosystem
type distributions to indicate the relative extent and intensity of biotic
disruption, as is desired for scoring range-wide at-risk status for natural
communities or habitat types (Keith et al., 2013). If repeated over time,
these maps can be used to understand overall trends in ecological
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condition of landscapes and the relative contributions of different land
uses to landscape change (Griffith et al., 2003; Comer et al., 2013).

However, both conceptual and practical issues complicate devel-
opment of these spatial models. Most studies documenting ecological
effects of land use features on ecosystems are quite context-specific,
aiming to document selected species responses to either habitat loss or
fragmentation (Knick and Rotenberry, 1995; Gelbard and Belnap, 2003;
Fischer and Lindenmayer, 2007; Reino et al., 2013); thus limiting their
generalized applicability. This reflects in part a strong tendency among
researchers to presume minimal interdependence among individual
species in their responses to these factors (Didham et al., 2012).

As a result, some researchers have approached this problem by
developing generalized spatial models with less context-specific inputs
and applications in mind. That is, they use broad generalizations about
the relative ecological effects of human land uses to then transparently
construct the spatial model. Some then use field-based observations of
land use effects to validate the model relative to their intended use. For
example, Brown and Vivas (2005) scored 25 common land use classes
along a continuum of estimates for energy input for their development
and maintenance; from lowest-intensity “pine plantations” to highest-
intensity “central business district (average 4 stories).” This scoring
enabled development of a “Landscape Development Index” varying
from 1.00 to 10.00 which was then translated as an area-weighted
index to individual watersheds. Model results were evaluated using
samples from field-based assessments of wetland function, but was not
evaluated for its utility for predicting other aspects of ecological con-
dition.

Theobald (2013) provided a generalized model of human mod-
ification for the conterminous USA using a series of “intensity” and
“footprint” values. Intensity is the degree to which an activity at a lo-
cation modifies a natural ecological system. Footprint is the aerial ex-
tent of the activity. Using a “fuzzy sum” algorithm, the combination of
these values provides a (0.0–1.0) human modification score per raster

cell. That is, as multiple stressors occur in a given raster cell, their
combined values will always approach, but not exceed, 1.0. In that
model, intensity values were taken directly from Brown and Vivas
(2005) or from expert opinion, and applied to fourteen nationally-
available map data sets for infrastructure and land use. The footprint
was calculated for each of several hundred land cover classes derived
from the U.S. National Gap Analysis land cover map. Through aerial
photo interpretation of some 6000 random locations, the proportional
overlap of each land use class with each land cover class was recorded.
These combined intensity/footprint values were then applied to the
regional distribution of each land cover class.

While the model was evaluated for its predictive power using the
US-EPA Wadeable Streams Assessment database, a concern remains for
the potential effect of applying footprint values to natural land cover
classes that vary considerably in their natural extent and distribution;
i.e., in a well-justified desire to incorporate empirical data into the
model, this particular component of model design could cause distor-
tions in the result, where natural land cover classes located far from
sources of ecological stress are still scored for some level of human
modification. This could occur where the spatial juxtaposition of land
uses to a given natural land cover type is highly skewed. No specific
evaluation of this issue was provided by Theobald (2013).

The spatial model discussed in this paper builds on this growing
body of published methods for ecological effects assessment and spatial
modeling to characterize relative ecological condition of landscapes
(Andreasen et al., 2001; Sanderson et al., 2002; Hansen, et al., 2005;
Leu et al., 2008; Woolmer et al., 2008; Theobald, 2013; Venter et al.,
2016). The intent of this Landscape Condition Model (LCM) is to use
nationally available, moderate to high-resolution spatial data from the
USA, Mexico, and Canada to transparently express assumptions re-
garding the relative effects of land uses on a broad cross-section of
terrestrial natural communities and species. Both empirical data and
expert knowledge were used in stressor selection and in model

Table 1
Date inputs and final parameters used for the NatureServe Landscape Condition Model. Site Impact Scores are derived from Brown and Vivas (2005) and NatureServe expert knowledge,
Distance Decay values represent the mean value of Good-to-Excellent Ranked Element Occurrences*.

Data Theme Data Sources Site Impact Score Impact Approaches Negligible (meters)

USA CAN MEX

Transportation
Primary Highways with limited access (vector) 1 7 0.172 4500
Primary Highways without limited access (vector) 1 7 8 0.172 2700
Secondary and connecting roads (vector) 1 7 8 0.219 3000
Local, neighborhood and connecting roads (vector) 1 7 0.5 420
Minor and Dirt roads (vector) 1 7 8 0.7 3800
Urban and Industrial Development
Mines (vector) 10 0.05 500
High Intensity Developed (raster) 2 7 9 0.058 3450
Transmission Lines (vector) * 7 9 0.168 100
Oil and Gas Wells (vector) * 7 0.168 500
Transmission and Utility Towers (vector) 7 0.168 500
Pipelines (vector) 7 9 0.168 200
Medium Intensity Development (raster) 2 0.25 2450
Open Space (raster) 2 0.308 900
Low Intensity Development (raster) 2 0.31 2400
Managed and Modified Land Cover
Agriculture (raster) 3,4 5,6,7 5,6 0.3 2500
Introduced Upland grass & forb (raster) 3,4 0.5 2300
Introduced Wetland (raster) 3,4 0.626 2500
Pasture (raster) 3,4 5,6,7 5,6 0.723 1950
Managed Tree Plantations (raster) 3,4 0.842 1200
Recently Logged (raster) 3,4 0.9 1500

1-TIGER roads (https://www.census.gov/geo/maps-data/data/tiger.html); 2-USGS National Land Cover (http://www.mrlc.gov/nlcd2011.php); 3-USGS Gap land cover (http://
gapanalysis.usgs.gov/); 4-NatureServe ecological systems and land cover (http://www.natureserve.org/conservation-tools/terrestrial-ecological-systems-united-states); 5-GlobCov
global land cover (http://due.esrin.esa.int/page_globcover.php); 6-ChinaCov global land cover (http://glc30.tianditu.com/); 7-CanVec Canadian land cover (http://geogratis.gc.ca/api/
en/nrcan-rncan/ess-sst/-/(urn:iso:series)canvec); 8-OpenStreetMap (https://www.openstreetmap.org/#map=5/51.500/-0.100); 9-CONABIO Mexican land cover (http://www.conabio.
gob.mx/informacion/gis/?vns=gis_root/biodiv/monmang/manglegw); 10-USGS/MRDS mine location (http://mrdata.usgs.gov/mrds/)
*Proprietary data, available under license in USA; see www.NatureServe.org for more information.
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parameterization. In contrast to other examples, this approach em-
phasizes an updateable and transparent model design which takes ad-
vantage of empirical biodiversity data from the conterminous USA to
both calibrate and validate the model for its intended application.
Variation in landscape condition of temperate North America was then
summarized regionally and other potential applications are briefly de-
scribed for consideration by conservation practitioners.

2. Materials and methods

Inputs for the LCM were obtained from readily available sources and
are summarized below, followed by discussion of the theory underlying
our model design. We then discuss data sets and methods used in model
calibration and validation.

2.1. Model inputs

Table 1 summarizes the data sets and parameters for this model.
Mapped information available for across temperate North America was
compiled into 20 categories, organized by a) Transportation, b) Urban
and Industrial Development, and c) Managed and Modified Land Cover.

No attempt was made to depict ecological stressors that act at re-
gional scales, such as air pollutants, and climate change stress was not
considered. Original data exist as a varying resolutions of vector data,
or 30 m–270 m raster data and represent varying degrees of docu-
mented accuracy. Each data set used in the analysis represents the best
available and no attempt was made by the authors to modify or correct
original data.

Line data (buffered to 30 m) and polygon features were summarized
to 30 m grids (see Table 1 for sources) Transportation features, derived
from Tiger Line data (approx. 2010) for the U.S., depict roads of five
distinct sizes (MTFCC Field). Transportation features in Mexico and
Canada used data extracted from OpenStreetMap (Highway Field).
These data provide a practical measure of human population centers
and primary transportation networks that link those centers. While
these road size classes do not directly indicate traffic volume along a
given stretch of road, their engineering and construction aimed to
support distinct levels of traffic volume. Therefore, inferences of ex-
pected traffic volume can be derived from these mapped classes,
especially when applied on this sub-continental scale.

As a complement to Transportation features, Urban and Industrial
Development includes industrial (e.g., mines, energy development) and
built infrastructure across a range of densities, from high density urban
and industrial zones, to suburban residential development and urban
open spaces (golf courses, other parks for outdoor recreation). Urban
footprints and attributes were obtained from individual country wide
data sources (Table 1). For the U.S. data were derived from national
land cover data through combined efforts of the inter-agency LAND-
FIRE, USGS ReGAP (approx. 2003), and National Land Cover Data
(NLCD) (approx. 2010). Other data sets in this category included oil/
gas wells and surface mining activity. The urban footprints for Canada
and Mexico were are limited to only one category type and were treated
as the High Density Urban category for this model.

The third category, Managed and Modified Land Cover, includes the
gradient of land cover types that reflect vegetation-based land use
stressors at varying intensities depending on data source (Table 1).
Agriculture and pasture for Canada and Mexico used a combination of
GlobCover (Bontemps et al., 2013), and GlobeLand30 (National
Geomatics Center of China, 2014) to identify areas that map croplands
in both models, those areas that are croplands in one layer, but not the
other were assigned as pasture. U.S. national data from USGS ReGAP
and LANDFIRE provide one consistent depiction of these varying land
cover classes, from intensive (cultivated and/or irrigated) agriculture,
vineyards and industrial tree plantations, recently logged areas, and
areas dominated by introduced non-native vegetation in upland and
wetland environments. For these latter classes, model users should

presume varying degrees of accuracy and completeness in their original
mapping, and map classes of introduced vegetation should likely only
include areas where substantial and obvious infestation has occurred.
These areas are concentrated in cold desert areas of the intermountain
west where extensive cheatgrass (Bromus tectorum) infestations have
been mapped in national mapping efforts. One can safely presume that
the presence of introduced plant species, especially when at low den-
sities, is not reliably represented by this model. Additionally, as has
been identified elsewhere (Theobald, 2013), while “pasture” is mapped,
there is currently no map reliably depicting effects from intense live-
stock grazing at regional or national scales for temperate North
America.

2.2. Theory

A key assumption of this spatial model is that human land uses can
interact with ecological processes in nature and result in ecosystem
stress, and that with distance from these land uses, their effects tend to
dissipate (Riitters and Wickham, 2003). Moreover, it is assumed that
since ecological processes occur in nature at multiple spatial and tem-
poral scales, the effects of human land uses are also manifested at
multiple scales (Vitousek et al., 1997; Folke, 2006). While we recognize
that analysis of spatial pattern (e.g., resulting from this spatial model)
does not account for all relevant ecological processes, most ecological
processes must be assessed indirectly, often through analysis of the
spatial patterns they produce (Turner et al.,1989).

Ecological processes most directly addressed by our spatial model
involve those linked to terrestrial landscape fragmentation, such as the
disruption of species dispersal (especially for plants, invertebrates, and
small vertebrates) or connectivity required to support disturbance re-
gimes operating across local landscapes. Certain effects on ecological
condition, such as alteration of natural fire or hydrologic regimes, or
removal of top predators, are not addressed. As expressed in this spatial
model, ecological condition acknowledges the critiques of fragmenta-
tion theory (Didham et al., 2012) that promote a more integrated view,
assuming many interdependencies among species and fragmentation
effects within natural communities. Fragmentation effects on one spe-
cies may carry over to other species for which there are frequent in-
teractions.

This model also adopts an approach to analysis that favors use of
continuous surfaces as opposed to discrete patch mosaics (McGarigal
et al., 2009). A patch mosaic approach remains quite justified for
practical applications to natural resource management, such as with
mapping discrete vegetation classes, to facilitate understanding of ve-
getation pattern. However, treatment of spatial heterogeneity as gra-
dients likely better reflects actual fragmentation effects on vegetation,
since patch mosaics impose internal homogeneity within each patch.
Our approach leaves us with the option to combine a discrete classed
vegetation map with our gradient surface of landscape condition to
more realistically represent fragmentation effects.

These several theoretical perspectives suggest a degree of pragma-
tism in approaches to spatial modeling, where on the one hand, a)
mechanistic models linking specific land use effects to specific biolo-
gical responses tend to be overly simplistic, but that, b) models de-
picting a combination of common human-induced stressors, especially
if designed in gradient surfaces, may explain much (albeit not all) about
the ecological condition one might encounter on the ground.

2.3. Calculation

Building on this theoretical foundation and set of assumptions, this
analysis uses the approach of combining the impact of condition at a
site with a factor for distance decay to define a per pixel composite of
overall landscape condition. Each input data layer (Table 1) is sum-
marized to a 30 m grid and, where the land use feature occurs, given a
site impact score that is greater than 0 and less than 1 (Table 1)
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reflecting presumed ecological stress or impact. These values were
adapted here from those used by Brown and Vivas (2005) and further
adapted by

Theobald, 2013. An alternative set of values could be used for a
given application of this model approach, but for our purposes, these
values suffice. Values close to 1.0 imply relatively little ecological im-
pact from the land use feature. For example, a given pixel of ‘recently
logged' − historically cleared for timber, but recovering towards nat-
ural vegetation over recent decades, is given a 0.9 score for site impact
as compared with irrigated agriculture (0.3) or high-density urban/in-
dustrial development (0.058). Certainly, there are some ecological va-
lues supported in these intensively used lands, but their condition is
quite limited when compared with areas dominated by natural land
cover.

For this model, the Euclidian distance for each input layer is cal-
culated for the model extent with a distance extending away from each
feature with and impact score < 1. The Euclidean distance was then
rescaled using sigmoidal function (Krivoruchko and Butler, 2013):

f(d) = 1/(1 + exp(−2*(d − ds)/c))

*where d = distance from the feature, d s = distance intensity threshold,
c = constant

This represents a distance decay function, expressed as decreasing
ecological impact with distance away from the mapped location of each
feature as applied to the Euclidian Distance value described above.

Those features given a high decay score (ds values approaching 1.0)
result in a surface where the impact value dissipates within a relatively
short distance. Those features given a low decay score (d values ap-
proaches ds) create a surface where the per-pixel impact value dis-
sipates more gradually with distance away from the impacting feature.
Values for each layer will approach 1.0, symbolizing negligible impact,
at the distance listed in the right-hand column of Table 1.

The combination of the two parameters is compounded in the for-
mula:

∏= + −f d( ) (1/(1 EXP(-2*(d-(d *0.5)/(d *0.25)))))
n

1
s s

( 0.25*LN(Si)-8*10-16)

*where d = distance from the feature, d s = distance intensity threshold,
Si = Site intensity threshold, Constants as a ratio (0.5, 0.25) are added to
mark the midpoint and inflection points of the curves at ¼, ½, and ¾ points
of the curve.

The site impact value Si is adapted as a modified power value and
defines the y intercept of the function in which the closer the Si get to 1
the less steep the decay function. Fig. 1 illustrates this effect using four
of the model input layers, where Si scores vary (0.05–0.723) and each to

decay to negligible levels of impact at several distinct distances
(500–3450 m). While in reality, this 30 m pixel model could appear on
the graph as a stepped function, this illustration for values of 0–4000 m
appears as a smooth line.

2.3.1. Combining input layers
9.7.2 The primary requirement of combining input layers for this

model is our need for a 0.0–1.0 index, with the ability to compare re-
gions which may have a different overall suite of stressors, but with a
similar combination of site stressors, in either a spatial or temporal
context. There were multiple sources of input layers for North America
(Table 1). Some inputs such as “Local, neighborhood and connecting
roads” were present in both the Canadian and U.S. sources, but not
available for Mexico. Other types such as “Pipelines” are available for
Canada and Mexico, but are considered proprietary in the U.S., and so
they remain unavailable.

Similar spatial models to this model utilize two approaches for ad-
dressing overlapping stressors are commonly used for combining input
layers. One model type uses a summation approach in which the impact
score of each layer are (Halpern et al., 2008; Selkoe et al., 2009;
Vorosmarty et al., 2010). Others merge stressors as a product in which
the stressors are combined as multiples, or as ratios (Bogaert et al.,
2002; Bogaert et al., 2005; Theobald, 2013). Similar to the Fuzzy Sum
method (Bonham-Carter, 1984) we used a product based approach to
minimize biases associated with the non-independence of spatial data.
As such, we assume that the areas with multiple overlapping stressors
have a higher degree of environmental stress than do areas with only
one stressor (given the same site impact and distance effects). For ex-
ample, at a pixel where there is “Secondary and connecting roads”
adjacent to “Agriculture” the potential site impact would be equal to
0.0657 (0.219 * 0.3) in all regions, whereas in some regions with more
detailed data the model might have an additional impact with the
presence of “Local, neighborhood and connecting roads” and equal a
pixel score of 0.0328 (0.219 * 0.3 * 0.5). An additive approach does not
allow an easy comparison in the context of a 0.0–1.0 index where the
final condition value would be predicated by the number of overall
impacts within the broader landscape.

Given that this model is intended for applications at broader land-
scape (e.g., 100 km2) areas and larger, the authors have confidence that
scaling the 30 m pixel data to a 90 m pixel size was an adequate re-
presentation of model inputs. By querying a Table of Weights, per-pixel
values for site impact apply to all pixels overlapping the individual
pixel. Where more than one land-use feature type occurs in a given
90 m grid cell, the product score of all applicable features is applied to
the grid cell (i.e., a multiplicative effect of site impacts − 0.05 and 0.9

Fig. 1. Effect of site impact value (Si) on the slope of the
distance decay function at 4 site intensities and variable rates
of distance decay from 500 m (Mines) to 3450 m (High
Intensity Development).

J.C. Hak, P.J. Comer Ecological Indicators 82 (2017) 206–216

209



will equal 0.045). The distance decay formula utilizes per pixel
Euclidian Distance and the Distance Decay formula to create a per-pixel
0.0–1.0 value for each land use feature layer.

2.3.2. Model calibration
In order to define where the distance decay (ds) is null (i.e., ap-

proaching negligible ecological impact) for model calibration, field
based estimates of ecological condition were gathered from Natural
Heritage programs (NatureServe 2015). Since the 1970s, Natural
Heritage programs have been conducting biodiversity inventories
within each of the United States, and all data is summarized in a
comprehensive national database (Stein et al., 2000). These inventories
primarily aim to document the location and relative ecological condi-
tion for both at-risk species and representative natural community
types. Each program employs botany, zoology, and community ecology
experts from each jurisdiction. Systematic methods are used to docu-
ment the surveyor, survey date, survey site, taxonomy, location, extent,
and relative ecological condition of each “occurrence” of a given spe-
cies or community type found on site.1 While by no means complete,
occurrence data provide several hundred thousand field-based ob-
servations of at-risk species and natural community types across tem-
perate North America. Natural Heritage methods include criteria for
expert evaluation ecological condition, considering occurrence size,
condition, and landscape context.2 Since a typical Natural Heritage
field ecologists has observed other occurrences of a given species or
community type, they are often well suited to apply criteria aiming to
score ecological condition along a gradient from high to low. Ad-
ditionally, some scoring results from expert workshops where multiple
ecologists have reviewed field observations and agreed upon a relative
score. The Element Occurrence Rank scores each occurrence along a 4-
category scale from A–D. Occurrences with “A” and “B” ratings are
considered of excellent or high ecological condition, respectively. The
“C” rated occurrences are considered of fair condition, or with inter-
mediate levels of degradation. Those occurrences scored as “D” are
considered to be in poor ecological condition and are thought to be
unlikely to persist without substantial management intervention.

A total of 56,709 occurrences of at-risk species, each having been
observed since 1990 and scored as A-D for ecological condition, were
used to calibrate distance decay values (Ds) for each input layer in the
landscape condition model (Table 1). Occurrence data used in cali-
bration represented 37 of the 48 conterminous United States. Aquatic
species (fish and invertebrates), were not included in model calibration
since the model aims to gauge upland and wetland ecological condition
and does not factor in water pollution or diversion that could affect
ecological condition of aquatic species.

The nearest distance between features from each model input layer
(e.g., secondary and connecting roads) and each occurrence was cal-
culated, and the results were plotted according to the A-D scores of the
occurrences.

Fig. 2 depicts examples of the ranked distance relationship used to
calibrate the landscape condition model for temperate North America.
Mean plots (1-SD bars) depicting the relationship between the distance
and scored occurrences were evaluated for statistical significance be-
tween A vs. B vs. C vs. D scores for all occurrences combined and for
distinct taxonomic groups (mammals, birds, herptiles, invertebrates,
plants). Two curves in Fig. 2 include the distance curves for agriculture
and for low density urban development, with all species occurrence
data combined. Two others curves in Fig. 2 indicate the relationships
between local roads and plant occurrence, and between pastures and
plant occurrences; respectively.

Statistically significant distinctions between B and C ranks were

identified and the mean distance associated with B values was selected
for use in the model of distance decay (Ds, Table 1). The mean distance
of B rank was selected for its relatively high ecological condition, and
we assume that, on average, they are located at a distance where effects
of the land use feature approaches negligible levels.

2.3.3. Model validation
Following the model calibration and all model parameters were fi-

nalized, three independent sources of field-based measurements for
ecological condition were used in model validation. By intersecting
these geo-referenced observation data with the calibrated landscape
condition model, the relative predictive performance of the model was
evaluated.

A total of 14,362 Natural Heritage occurrences of at-risk species, all
scored from A–D for ecological condition, were held aside from model
calibration. Additionally, 38,723 of upland and wetland natural com-
munities, all scored from A-C for ecological condition, were used as
independent validation samples. Species occurrence data used in vali-
dation represented 37 states and community occurrences represented
30 states. All occurrences had been last observed since 1990. Since we
cannot assume normal distributions of landscape condition scores re-
lative to validation samples, a non-parametric Kruskal-Wallis statistic
was generated to test for significant differences in landscape condition
scores relative to occurrences ranked A, B, C, or D.

Second, 21,195 invasive annual grass, and 15,689 invasive forb field
samples of vegetation sample plots, each including abundance of each
plant species, were used for model validation. Vegetation plots samples
were compiled nationwide to provide reference locations for vegetation
mapping by the USA inter-agency LANDFIRE effort. Gathered sample
data were evaluated by LANDFIRE to ensure that they a) were located
with adequate precision for mapping with a 30 m grid resolution, b)
reflected conditions from the past decade, and c) had sufficient floristic
information to support their labeling to the LANDFIRE map legend.
Therefore, sample plots tended to have information on plant species
composition and relative abundance. For our purposes, the presence
and relative abundance of invasive plants species, especially invasive
annual grasses and forbs, were adequate for use in model evaluation.
We expect to see increasing abundance of invasive plants with de-
creasing values from the landscape condition model. Sample plots with
relative abundance values of invasive annual grasses were categorized
into quartile classes, based on relative abundance of annual grasses;
Quantile 1 (< = 1.5% cover), Quantile 2 (1.5–5%), Quantile 3
(5.1–15%), and Quantile 4 (15.1–100%). Invasive forbs categories were
Quantile 1 (< = 1% cover), Quantile 2 (1–5%), Quantile 3 (5.1–20%),
and Quantile 4 (20.1–100%). Validation sample plots, concentrated in
the intermountain west states of the USA, were intersected with the
calibrated landscape condition model, and a non-parametric Kruskal-
Wallis was applied to test for significant differences in landscape con-
dition scores relative to each quartile pair of abundance for invasive
annual grasses and invasive forbs.

3. Results and discussion

3.1. Model validation

Table 2 provides a summary of validation results from Kruskal-
Wallis tests for significant differences among occurrence ranks (A–D) or
quantiles of invasive plant abundance relative to landscape condition
values predicted by the spatial model.

Pairwise comparisons of occurrence ranks or invasive plant quan-
tiles are summarized in each cell of the table, indicating TRUE for
statistical significance (: ‘***’ p = 0.001, ‘**’ p = 0.05, ‘*’p = 0.01).
These comparisons are summarized using different subsets of in-
dependent validation samples to indicate the degree to which the model
could reliably predict condition relative to each group species, or
community types. Sample size for each subset is included within each

1 http://www.natureserve.org/conservation-tools/standards-methods/element-
occurrence-data-standard.

2 http://explorer.natureserve.org/eorankguide.htm.
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row of the table. Within Table 2, NA indicates circumstances where no
D-ranked occurrences were available, so no tests for significant differ-
ences between occurrences with D-ranks vs. A–C ranks were possible.

Where all species occurrences are included together, differences
between each occurrence rank are predicted with statistical sig-
nificance, indicating that the landscape condition model may be able to
differentiate landscapes that tend to support A vs. B. vs. C. vs. D oc-
currences of many at-risk species. This same result is repeated when
considering plant occurrences. Sample sizes were much smaller for

validation samples segmented into other subgroups of species. Results
for terrestrial invertebrates show a decreasing trend between landscape
condition score and occurrence rank, but the model appears to be less
sensitive and is unable to distinguish A vs. B or B vs. C ranks, although C
vs. D ranks were distinguished. For amphibians and reptiles, B vs. C and
C vs. D ranks were distinguishable, but not A vs. B. With birds, C vs. D
ranks were distinguished. No ranks could be reliably distinguished
when using validation samples for mammals and for non-vascular
plants. While interpretation of these results are complicated by small
sample sizes, they generally reflect our expectation that this landscape
condition model would be more sensitive and predictive for at-risk
species groups that tend to occur in more local scales (e.g., plants) as
compared with birds and mammals that tend to occupy larger areas and
have more varied tolerances to a wider range of landscape stressors.

Analysis of validation samples for several thousand occurrences of
natural communities, segmented into upland vs. wetland types and
ranked A–C indicated statistically significant differences across all
tested categories. Again, as indicated in Table 2, since no D ranked
occurrences were available for validation, we could not determine
whether or not C vs. D ranked occurrences of upland or wetland natural
communities could be differentiated by landscape condition scores. On
the whole, this result is quite encouraging in that a very common ap-
plication of this form of landscape condition model is to provide an
initial indication of quality and integrity for predominant upland and
wetland natural communities across extensive regional landscapes.

Similar testing to distinguish predictive capabilities of the model for
invasive annual grass and for invasive forbs indicated statistically sig-
nificant distinctions in all but the first two quartile breaks (< 1.5% vs.
1.5–5%; and< 1% vs. 1–5%) for grasses and forbs, respectively. This
suggests that, especially in the semi-arid intermountain western USA,
trace levels of invasive grasses and forbs can appear to be ubiquitous
across lower elevations, so distinguishing among low percentage classes
is unlikely when using a spatial model of this nature. But conversely,
where invasive plants are more abundant they are strongly tied to
mapped infrastructure that shows strong correlations with land use

Fig. 2. Calibration of Distance Decay: Summary correspondence between Natural Heritage Occurrences Rank for condition as compared with distance from location of mapped features.

Table 2
Summary validation results by ranked groups. Values represent sample size followed by
Kruskal-Wallis tests for significance. *Note LANDFIRE invasive plants grouped by quartiles.

Element Occurrence and Invasive Species Rank Comparisons

Species/Communities A vs. B A vs. C A vs. D B vs. C B vs. D C vs. D
All Species EOs

(n = 14,262)
T*** T*** T*** T*** T*** T***

Amphibians/Reptiles
(n = 1000)

F F T** T** T** T**

Birds (n = 1500) F F F F T** T**
Terrestrial Invertebrates

(n = 762)
T*** T*** T* F T* T*

Mammals (n = 500) F F F F F F
Non-Vascular Plants

(n = 500)
F F F F F F

Plants (n = 10,000) T*** T*** T*** T*** T*** T***
Wetland Communities

(n = 9249)
T*** T*** NA T*** NA NA

Upland Communities
(n = 29,362)

T*** T*** NA T*** NA NA

LANDFIRE − Invasive
Plants

Q1 vs.
Q2

Q1 vs.
Q3

Q1 vs.
Q4

Q2 vs.
Q3

Q2 vs.
Q4

Q3 vs.
Q4

Invasive Annual Grass
(n = 21,657)

T*** T*** T*** T*** T*** T***

Invasive-Forbs
(n = 15,689)

T*** T*** T*** T*** T*** T***

Significance: ‘***’ p = 0.001, ‘**’ p = 0.05, ‘*’p = 0.01.
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history and the several common vectors for plant invasion (e.g., surface
disturbance, intensive grazing, and seed transport with transportation
tied to infrastructure).

3.2. Variation in landscape condition across LCCs

Landscape Conservation Cooperatives (LCCs) have become estab-
lished across temperate North America as a mechanism for cross-jur-
isdiction collaboration in natural resource management and conserva-
tion. Included in Fig. 3 are boundaries of the 16 LCCs overlapping the
conterminous USA.

Table 3 provides summary statistics for the landscape condition
model within each LCC, including mean, standard deviation, median
landscape condition and summarized ranked threshold. Using land-
scape condition thresholds derived from a 1 standard deviation range
around the mean values associated with ranked (A–D) Natural Heritage
occurrence data, the relative proportions of each LCC with landscape
condition scores falling roughly within A-D ranked categories are in-
cluded. In this instance, we used one standard deviation above the
mean of the landscape condition value for the D occurrences to de-
termine the C. vs. D threshold. For this analysis, the overall threshold
value breaks are as follows; A-Rank > = 0.36, B-Rank > = 0.30, C-
Rank > = 0.25, D-Rank < 0.25.

Striking patterns emerge where high proportions of each region fall
at the extremes (i.e., most intact A-rankings vs. most impacted D-
rankings) with much lower proportions falling within intermediate
categories of B and C. LCCs throughout the west tend to include less

intensively developed areas and so have higher average and median
scores than those found across the east. The Desert, Southern Rockies,
Great Basin, Great Northern, and North Pacific LCCs include extensive
roadless areas, sparsely populated high mountains and desert, and re-
latively concentrated zones of agricultural and urban/industrial de-
velopment; and as a result include much higher proportions scored in
the A-Rank category. This contrasts with many LCCs in the east (e.g.,
South Atlantic) and across the Great Plains (e.g., Eastern Tallgrass
Prairie and Big Rivers) where productive soils and extensive transpor-
tation infrastructure have resulted in much more fragmentation over
several hundred years; and include 42.1%–93.7% of LCC land area in
the D-ranked category.

3.3. Application to At-Risk status assessment

At-risk status assessments for biodiversity take many different
forms. NatureServe methods factor together trends in the distribution,
quality, and threat associated with species and natural communities in
order to determine their relative status (Master et al., 2012). These
methods parallel long-standing approaches for IUCN red listing of
species (Mace et al., 2008) and more recently, for ecosystems (Keith
et al., 2013). For the IUCN Red List of Ecosystems, a measurement of
the proportional range wide extent of an ecosystem type that, within set
timeframes, has been impacted by a) environmental degradation or b)
disruption of biotic processes, gauge the relative risk of ecological
collapse across the distribution of the type (Bland et al., 2016). While
environmental degradation includes effects of physical alterations to

Fig. 3. Map of landscape condition with Landscape Conservation Cooperatives overlapping the conterminous Temperate North America.

J.C. Hak, P.J. Comer Ecological Indicators 82 (2017) 206–216

212



geophysical settings, or effects of dynamic process alteration like fire or
flooding regime, disruption of biotic processes may encompass many
common effects of habitat fragmentation, such as disruption of species
dispersal. In many instances, these effects may be inferred from spatial
overlay of this landscape condition model. The D3 sub-criterion in
IUCN approach suggests classifying disruption of biotic processes at
three levels of severity, expressed in percentages (> 50%,>70%,
and>90% ‘severity’ if applied to change since 1750) (Bland et al.,
2016). Here we used landscape condition values that predicted C vs. D
ranks occurrence scores from Natural Heritage inventories to approx-
imate 50% and 90% severity measures, respectively.

Fig. 4 depicts results for one major vegetation type, North Central
Interior Dry Mesic Oak Forest and Woodland (map source LAND-
FIRE.gov). In this region oak forests have been classified into several
major types (Comer et al., 2003). This type covers over 42,000 km2

where it dominates some of the more heavily populated portions of
temperate North America. While there is considerable concern for
ecological stressors to these woodlands, primarily from altered wildfire
regimes, landscape conversion, and population pressures, the relative
proportion of its distribution directly affected by landscape alteration is
much more than for many other types in temperate North America. This
is reflected by overlay scores with the landscape condition model,
where more than 91% of the total extent of this type would score in D-
ranked category (Rank Proportions: A = 4.3%; B = 4.4%; C = 0.75%,
D = 90.5%). While other measures could suggest otherwise, based on
this one measure of biotic disruption alone, this type would be cate-
gorized just over the threshold for “Critically Endangered” under the
IUCN red list.

3.4. Considerations in model design and interpretation

This spatial modeling approach aims to utilize readily available data
and knowledge to describe landscape conditions based upon a wide
spectrum of stressors. Because no spatial model can account for all
conditions one might encounter on the ground, this should be viewed as
an initial indicator of those conditions; always subject to field ver-
ification and adaptation of the input parameters. More complex
methods could be devised for combining spatial data layers than the
ones depicted here, but our approach favored transparency, repeat-
ability, and ease of application. Results of applying this modeling al-
gorithm are more likely to vary based on the quality and quantity of
input data layers (Table 1) than on model parameters. As noted above,

the availability of certain data layers (e.g., a representation of grazing
effects, certain invasive species, etc.), and the quality and completeness
of such data, likely explain much about the relative predictive power of
the spatial model. We anticipate that this same modeling approach
could be applied at more local scales (e.g., states, ecoregions) with lo-
cally available data sets with increased predictive power.

Available data for model calibration and validation present another
key challenge to application and refinement of this and related mod-
eling approaches. In this instance, we have utilized two important
sources of field-based biodiversity observations in the USA. We expect
that calibration decisions we made with these data sets have sufficiently
broad applicability to be considered for application elsewhere where
equivalent field observation data are unavailable. However, we also
acknowledge the limitations of these field observation data, as this
application differs from the intended purpose for which the observa-
tions were originally collected.

Natural Heritage inventories are not directed towards a sampling of
all species, but instead focus on a subset of species of conservation
concern. So rather than the full spectrum of species occurring in a given
region, model calibration was informed by species that tend to be most
sensitive to human-induced alteration. Also, these data reflect an ac-
cumulation of field observations, the data are neither a census or a
systematic sample of a given species or community type. While these
reflect a systematic approach to documenting their location and con-
dition, we presume that they also reflect the evolving perspectives of
the field biologists and methods that have advanced since the 1990s.
Additional factors are considered in occurrence ranking that may ex-
plain differences between predicted conditions and those encountered
in the field. For example, some at-risk species may have been rated
relatively high due to large sub-population size while landscape context
has been compromised. This could be the case where population size is
lagging indicator of condition, or their rating reflects viability re-
quirements not addressed in the landscape condition model.

While this analysis focused solely on identifying threshold values for
application across a continental scale as applied to the terrestrial bio-
diversity in Temperate North America, avenues for customizing of this
model could consider region specific conditions, or variants based on
major vegetation formations (Faber-Langendoen et al., 2014). For ex-
ample, adjustments to distance decay parameters might be identified
though analysis of subsets of Natural Heritage data spatially coincident
with specific major ecosystem types, such as cool-temperate closed-
canopy forests, or non-forested wetlands, across the eastern USA.

Table 3
Statistics for landscape condition summarized by Landscape Conservation Cooperative. *Note, for GIS processing purposes all values are represented as integers where the LCM x100.

LCC Number LCC Name Mean (x100) Standard Dev. (x100) Median (x100) A-Rank (%) B-Rank (%) C-Rank (%) D-Rank (%)
(see map)

1 Desert 74.29 33.17 97 89.0% 1.5% 1.2% 8.3%
2 Southern Rockies 71.93 30.92 82 85.6% 2.6% 1.3% 10.5%
3 Great Basin 68.34 33.40 78 81.0% 2.5% 2.8% 13.7%
4 Great Northern 62.14 35.11 63 84.1% 2.1% 2.2% 11.6%
5 North Pacific 45.94 37.58 41 74.8% 2.1% 1.1% 22.0%
6 California 40.89 39.46 27 50.1% 2.5% 1.9% 45.5%
7 Plains and Prairie Potholes 35.15 33.78 23 30.8% 11.4% 11.6% 46.1%
8 Great Plains 32.90 33.10 20 32.8% 6.6% 6.5% 54.1%
9 Gulf Coast Prairie 32.36 33.49 17 45.3% 4.9% 3.8% 45.9%
10 North Atlantic 27.52 36.23 6 53.0% 2.6% 2.2% 42.1%
11 Peninsular Florida 26.34 35.23 7 27.6% 4.1% 3.0% 65.1%
12 Upper Midwest and Great Lakes 18.71 29.61 4 55.9% 1.7% 1.7% 40.6%
13 Gulf Coastal Plains and Ozarks 18.46 24.35 7 18.6% 4.2% 3.9% 73.3%
14 Appalachian 14.73 22.80 4 14.3% 3.3% 2.9% 79.5%
15 South Atlantic 11.51 19.59 3 9.8% 2.8% 2.6% 84.8%
16 Eastern Tallgrass Prairie and Big Rivers 7.49 12.92 3 3.3% 1.1% 1.8% 93.7%
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Fig. 4. Relative severity of biotic disruption across part of the distribution of North Central Interior Dry Mesic Oak Forest and Woodland. Maps depict the overall pattern of the land cover
as intersected by the LCM score and categorization of LCM score to IUCN (D3) ranks.
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4. Conclusions

Concerns exist in the application of threat models (Tulloch et al.,
2015), where a threat model should not be used exclusively to de-
termine conservation priorities. We fully agree, but an empirically-
based analysis such as the Landscape Condition Model (LCM) offers a
substantial contribution conservation priority-setting, in that it helps to
identify locations along a gradient of condition that indicate the relative
potential for successful conservation outcomes. The results for North
Central Interior Dry Mesic Oak Forest and Woodland displayed in Fig. 4
illustrates one measure among several for documenting relative con-
dition at a local site (Comer and Faber-Langendoen, 2013) or for ran-
gewide conservation status of a given ecosystem type (Master et al.,
2012, Bland et al., 2016). When used in conjunction with conservation
planning software such as NatureServe Vista™3; or Marxan (Ball et al.,
2009) the LCM can aid scenario-based planning processes by not only
identifying areas of potential land-use impact, but can also provide a
relative “cost surface” for site selection (Marxan) or for connectivity
modeling with tools such as Circuitscape (McRae et al., 2008).

As part of a several comprehensive conservation planning efforts
such as the Bureau of Land Management’s Rapid Ecological Assessments
(BLM REAs) (Comer et al., 2013), the LCM provided a crucial input for
not only identifying where ecosystems and species are currently at risk.
Additionally, the LCM was easily modified for future projections of
landscape change using predictors such as Theobald (2010) prediction
of landscape change from 1992 to 2030. Given that the LCM utilizes a
product based summation, a simple subtractive analysis will identify
where there is the greatest magnitude of change in the landscape.

The intent of the landscape condition model was to develop an easily
modified, rapidly updateable approach that uses readily obtainable data that
would not require specialized training for its use. With advancing knowledge
and availability of new spatial data sets, users around the world may apply
this modeling approach to characterize ecologically-relevant effects of land
uses in a manner that may support both current status assessment and for
monitoring change over time. As previously stated, this model is intended to
be an easily implemented, andmodified, tool. The tool has been developed as
an ArcGIS V10.x Toolbox in Python scripting, and will be made available as a
downloadable ToolBox via NatureServe’s website.4
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